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Summary. We study a one-sector stochastic optimal growth model with a repre-
sentative agent. Utility is logarithmic and the production function is of the Cobb-
Douglas form with capital exponent α. Production is affected by a multiplicative
shock taking one of two values with positive probabilities p and 1 − p. It is well
known that for this economy, optimal paths converge to a unique steady state, which
is an invariant distribution. We are concerned with properties of this distribution.
By using the theory of Iterated Function Systems, we are able to characterize such
a distribution in terms of singularity versus absolute continuity as parameters α
and p change. We establish mutual singularity of the invariant distributions as p
varies between 0 and 1 whenever α < 1/2. More delicate is the case α > 1/2.
Singularity with respect to Lebesgue measure also appears for values α, p such that
α < pp (1 − p)(1−p). For α > pp (1 − p)(1−p) and 1/3 ≤ p ≤ 2/3, Peres and
Solomyak (1998) have shown that the distribution is a.e. absolutely continuous.
Characterization of the invariant distribution in the remaining cases is still an open
question. The entire analysis is summarized through a bifurcation diagram, drawn
in terms of pairs (α, p).
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1 Introduction

In deterministic optimal growth models, it is customary to characterize a (stable)
steady state, and also to examine how the steady state changes as parameters of the
model change.

In contrast to this, relatively little is known about the nature of the steady state
of stochastic optimal growth models. A stochastic steady state is identified as an
invariant distribution, and, since the seminal papers by Lucas-Prescott [41] and
Brock-Mirman [11], a large part of the literature on the subject has focused on
the existence, uniqueness and global stability of this invariant distribution. See, for
example, [44], [45], [10], [16] , [28] and, more recently, [34], [6] and [57].

However, the problem of characterizing such a distribution appears to have
received far less attention even for the simplest examples arising in such models.
Consequently, our state of knowledge, regarding how the stochastic steady state
changes with the parameters of the model, is extremely limited. An exception is the
paper by Mirman and Zilcha [46] where, for some examples with specific parameter
values, the limiting distribution function can be directly computed.

The aim of the present work is to examine one example of an optimal growth
model under uncertainty, in as much detail as possible, and address specifically two
questions regarding the stochastic steady state of the model:

1. What is the nature of the invariant distribution representing the stochastic
steady-state? Specifically, is it absolutely continuous, so that it can be rep-
resented by a density, which could possibly be estimated in terms of a few
parameters? Or, is it singular, so that, essentially, we do not have a conve-
nient way of representing the function without actually stating the value of the
function for every point in its domain?

2. How does the nature of the invariant distribution (specifically, its absolute con-
tinuity or singularity) change with parameters of the optimal growth model
generating it? Specifically, is it possible to represent this information in the
form of a convenient “bifurcation diagram” involving the key parameters of the
optimal growth model?

These questions appear to be quite basic. Yet, as we will see, answering them,
even in the context of a simple example of an optimal growth model, is surprisingly
difficult, and the whole family of invariant measures obtained for a large set of
parameters values exhibits an extremely rich and complicated structure.

The particular example of optimal growth under uncertainty that we discuss
is a familiar one in which the utility function is logarithmic and the production
function is of the Cobb-Douglas form with capital exponent α. Uncertainty is
captured in terms of a multiplicative shock to the production function taking one of
two values, with positive probabilities p and 1−p, which are fixed over time. (That
is, the process of exogenous shocks is independent and identically distributed with
marginal probability distribution given by these specified probabilities).

It is known that this optimal growth problem can be solved, using dynamic
programming methods, to obtain an optimal policy function. This, in turn, yields
a non-linear stochastic process, governing the evolution of the state variable (the
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capital stock of the economy). Using the specific structure of the example, it is
possible, through an appropriate log-transformation, to convert this into an iterated
function system (IFS) involving affine functions (or similarities). A straightforward
application of the theory of iterated function systems leads to the functional equa-
tion governing the invariant distribution1 of the (transformed) random dynamical
system.

We note that since our random dynamical system is generated by a finite number
of affine maps which are contractions, the existence, uniqueness and global stability
of the invariant distribution (starting from an arbitrary initial distribution), which
the literature is principally concerned with, are guaranteed by a straightforward
application of the standard theory of iterated function systems, developed by Karlin
[38], Norman [48], Hutchinson [35], Barnsley and Demko [4], and others. (For ease
of exposition, a brief review of the theory of IFS is presented in Sect. 2.)

Our objective is to be able to say something useful about the stochastic steady
state beyond the above mentioned properties.2 To this end, we provide a heuristic
discussion in Section 3 regarding the features of the stochastic steady state that one
may expect to obtain. In particular, we observe that the support of the invariant
measure should be “full” or “thin” depending on whether or not the images of
the maps of our dynamical system “overlap”. In addition, we relate the invariant
measure of our IFS to the distribution of a random variable, defined in terms of an
infinite series, and known as an Erdös series.

This link allows us to exploit the mathematical literature on the distribution
of the Erdös series. The literature on this topic has developed over about sixty
years (see Peres, Schlag and Solomyak [50]), and much of it is inaccessible to the
non-specialist. The principal task of this paper is to provide a systematic review
of the part of this literature that is directly relevant for the economic problem that
we are studying. All the mathematical results that we review are known, except
for the result on mutual singularity in Section 4. To make our review useful to a
wider audience, we have tried to provide (especially in Sects. 4 and 5) elementary
treatments of the relevant results (on singular distributions), and self-contained
expositions of the techniques involved.

We start our formal analysis of the nature of the stochastic steady state in
Section 4. In the first subsection we confine our attention to “low” values of our
technological parameter, α, which in our case turns out to be the range α ∈ (0, 1/2).
For α ∈ (0, 1/2), the images of the maps of our IFS do not overlap, so that the
support of the invariant distribution is seen to be a Cantor-like set of Lebesgue
measure zero. The invariant distribution is clearly singular in this case, and its
graph is the well-known “Devil’s Staircase”. It is worthwhile to note that the actual
magnitude of the probability of picking each map of the IFS plays no role in
obtaining this conclusion.

1 Whenever the IFS involves similarities, its invariant distribution is also called a self-similar measure.
2 The idea of characterizing complexity of measures, usually, but not necessarily, defined over fractal

supports, is due to Mandelbrot [42], who called this approach multifractal analysis. Far from pursuing
a completely exhaustive multifractal study, here we confine our research on singularity versus absolute
continuity properties of the invariant distribution.
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In contrast, for the borderline case of α = 1/2, the magnitude of the probability
of picking each map of the IFS plays a crucial role in determining the nature of
the stochastic steady state. Thus, in the equal probability case, it is easy to see that
the invariant distribution is uniform and so absolutely continuous. On the other
hand, for the unequal probability case, the invariant distribution is always singular,
leading to a continuous, strictly increasing distribution function on the unit interval,
whose derivative is zero (Lebesgue) almost everywhere. (Construction of a function
with these features figures prominently in Lebesgue’s theory of integration.)

To conclude Section 4, we are able to establish an even stronger property of the
invariant distributions for α ∈ (0, 1/2]. We prove that they are all mutually singular;
that is, they concentrate over subsets of Cantor-like sets that have empty intersection.
This result is in line with the work started by Montrucchio and Privileggi [47],
where they found that the support of the invariant distribution is a fractal set (for
α ∈ (0, 1/2)). Thus rather strange dynamics can be optimal in standard neo-
classical stochastic growth models. The “mutual singularity” property shows that
the “thin support” of the invariant distribution is itself highly sensitive to small
changes in probabilities.

Section 5 provides a further refinement of the singularity result by showing that
for the combination of parameter values (α, p) for which

1/2 < α < pp(1 − p)(1−p)

the invariant distribution is singular with respect to Lebesgue measure. This means
that the limiting distribution can be singular for (a set of positive Lebesgue measure
of) values α > 1/2 as well, provided that probabilities p and 1 − p are asymmet-
ric enough. Coupled with singularity for α ∈ (0, 1/2), all p, and for α = 1/2,
p �= 1/2, this is a well known result in the mathematical literature (see the discus-
sion in Sect. 5). We provide a simplified proof based on the concept of Hausdorff
dimension, which we discuss briefly to keep our exposition self-contained.

In Section 6, we turn our attention to the remaining cases in which the techno-
logical parameter, α, is relatively “high” and probabilities p and 1 − p are not too
asymmetric, that is, pairs of parameters (α, p) such that

pp(1 − p)(1−p) < α < 1. (1)

This turns out to be the most difficult situation to analyze. Our investigation of this
case is incomplete; we report an important result, recently established by Peres and
Solomyak [52], which establishes almost everywhere absolute continuity of the
invariant distribution for values of the probability p in the interval [1/3, 2/3] and
pairs (α, p) satisfying (1).

It is interesting to find that the function pp(1 − p)(1−p), at least for 1/3 ≤
p ≤ 2/3, turns out to be the borderline between singularity and (generic) absolute
continuity of the invariant distribution. In particular, for a given p in [1/3, 2/3],
as α increases from 1/2 to 1 (which means that the degree of “overlap” of the
images of the maps of the IFS increases), the distribution turns from a singular one
to an absolutely continuous one around the value α = pp(1 − p)(1−p). That is, the
turning point from singularity to absolute continuity of the invariant distribution is
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determined precisely by the entropy, [−p ln p−(1 − p) ln (1 − p)], of the Bernoulli
process underlying the exogenous shocks in our growth model. Furthermore, in-
variant distributions exhibit increasing “smoothness” above the entropy curve: for
almost every pp(1−p)(1−p) < α ≤ p2 +(1 − p)2 , the distributions have densities
in Lγ , where 1 < γ ≤ 2, and γ increases as α increases.

The whole discussion leads to Section 7, where a partial “bifurcation diagram”
in terms of the parameters (α, p) on the unit square, indicates how the nature of
the stochastic steady state varies with changes in these parameters (see Fig. 5). By
analyzing another result by Peres and Solomyak [52], which establishes a necessary
smoothness condition for the invariant probability, we discuss further developments,
and we sketch a conjectured “complete” bifurcation diagram (see Fig. 6).

2 The framework

In this section, we will describe the framework for our subsequent analysis. The
concepts and basic results of iterated function systems (IFS) are essential to this
study, and we provide a simplified exposition in Section 2.1. This exposition is
based on Stark and Bressloff [58], and Lasota and Mackey [39]. In Section 2.2,
we introduce the familiar model of optimal growth under uncertainty, and show, in
the context of a particular example, how the analysis of optimal dynamics in this
model reduces to the study of an IFS.

2.1 Iterated function systems

2.1.1 Definitions Let (X, d) be a complete metric space. An IFS (f, p) consists of
a finite number of mappings {f0, . . . , fm−1} from X to X , and a set of associated
probabilities {p0, . . . , pm−1} (so that pz > 0 for z = 0, . . . , m − 1 and p0 + · · · +
pm−1 = 1). Such an IFS gives a (random) dynamical system by defining a (random)
orbit of f to be a sequence {xt}∞

t=0 such that xt+1 = fzt (xt) where {zt}∞
t=0 are

i.i.d. over {0, . . . , m − 1} with distribution {p0, . . . , pm−1}.
We are interested in IFS with contracting maps. Hence, the fzs will be assumed

to be contractions; that is, for each z ∈ {0, . . . , m − 1} there is a γz such that
0 ≤ γz < 1 and for all x, y ∈ X

d(fz(x), fz(y)) ≤ γzd(x, y). (2)

We shall denote by γ the maximum of the γz . Clearly γ < 1.
The maps {f0, . . . , fm−1} induce an operator T on X, called the Barnsley

operator, defined by:

T (A) = f0(A) ∪ · · · ∪ fm−1(A), A ⊂ X, (3)

where fz(A) denotes the image of the set A through fz . Operator T allows for a
definition of an invariant set of an IFS. A set Af ⊂ X is said to be an invariant set
of f if it is compact and satisfies

T (Af ) = Af . (4)



44 T. Mitra et al.

One can also define a Markov operator M which describes the evolution of proba-
bilities under the process xt+1 = fzt (xt). Thus let B(X) be the σ-algebra of Borel
measurable subsets of X and P(X) the space of probability measures on B(X).
Then if µ ∈ P(X) is an initial probability distribution we want M(µ) to be the
distribution after one iteration of f . M is then given by

Mµ (B) =
m−1∑
z=0

pzµ
(
f−1

z (B)
)
, for all B ∈ B(X)

where f−1
z (B) denotes the set {x ∈ X : fz(x) ∈ B}. Note that M is a linear op-

erator from P(X) to itself.

2.1.2 The invariant measure of an IFS We shall be interested in the asymptotic
behavior of measures under repeated application of M ; in other words, in the long
run behavior of distributions as they evolve under f . Since the maps fz of the IFS
we are focusing on are contractions, it turns out that there is a unique invariant
distribution µf , that is

µf = M (µf ) (5)

and the iterates M t (µ)s converge weakly to µf as t → ∞ for all initial distributions
µ ∈ P(X).

The simplest proof of the existence and uniqueness of µf uses the Hutchinson
[35] metric L defined over a subset L(X) of P(X). For all pairs µ, υ ∈ P(X),
define a pseudo-metric3 by

L(µ, υ) = sup
{∣∣∣∣
∫

X

φdµ −
∫

X

φdυ

∣∣∣∣ : Lip (φ) ≤ 1
}

(6)

where the supremum is taken over all functions φ : X → R that are bounded and
with Lipschitz constant not larger than 1. Fix any a ∈ X , and define4

L(X) =
{

µ ∈ P(X) :
∫

d (x, a) dµ < ∞
}

.

L defined in (6) satisfies the triangle inequality, thus L(X) does not depend on a.
When f satisfies (2), the operator M : L(X) → L(X) turns out to be a con-

traction with respect to L. In fact we have L (M(µ), M(υ)) ≤ γL (µ, υ). Then
through a contraction mapping argument it can be shown that µf is the unique
attracting fixed point of M . Since the L-metric convergence implies weak con-
vergence over L(X) (see Proposition 5 in the Appendix), it follows that M t (µ)
converges weakly5 to µf .

3 This is not a metric: L is clearly non-negative, symmetric and satisfies the triangle inequality, but
it could be plus infinity for some pair µ, υ ∈ P(X); also L (µ, υ) = 0 does not necessarily imply
µ = υ. Therefore, we need to restrict our probability space to a subset L(X).

4 Note that the space L(X) is more general than the space of probability measures with bounded
support actually used by Hutchinson [35].

5 Hutchinson’s [35] construction works for the special case of an IFS with contracting maps. However,
refinements of the theory are possible for more general classes of IFS. For instance, Karlin [38] proves
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Since the measure µf is the unique invariant measure for M , it must be ergodic.
However a much stronger property holds: µf is in fact a Sinai-Ruelle-Bowen (SRB)
measure. This means that for all x0 ∈ X and almost every sequence {fzt} of maps
the visiting frequency of the orbit {xt} to a set B ∈ B(X) is simply µf (B), that is

lim
n→∞

# {xt ∈ B : 1 ≤ t ≤ n}
n

= µf (B) (7)

This was first proved by Norman [48] and later independently by Elton [21].
Equation (7) provides the simplest method of estimating µf .

2.1.3 The attractor of an IFS The existence of a (unique) invariant set, Af , of f
can be seen as follows. Consider the space K (X), the set of all non-empty compact
sets in X . This is itself a complete metric space when endowed with the Hausdorff
metric dH , which is defined (see Falconer [25]) as follows. Let

Aδ = {x ∈ X : d (x − a) < δ for some a ∈ A} (8)

denote the δ-parallel body of A ∈ K (X), i.e., the set of points within distance δ
of A. Then the Hausdorff metric is defined for A, B ∈ K (X) as

dH(A, B) = inf {δ > 0 : A ⊂ Bδ and B ⊂ Aδ} .

It is easily seen that dH (T (A), T (B)) ≤ γdH(A, B) (see, for example [25] or
[39]), so thatT is a contraction onK (X). Thus,T has a unique fixed point, call itAf .
Then Af is the unique invariant set of f . Further, we have T t(A0) → Af as t → ∞
for any initial A0 ∈ K (X); and, given any A0 ∈ K(X) such that T (A0) ⊂ A0,
we have Af ⊂ T t+1(A0) ⊂ T t(A0) for t = 0, 1, 2, . . . (see Proposition 12.8.3, p.
439, of Lasota and Mackey [39]).

The support of the invariant distribution, µf , is called the attractor of f . It is
useful to note that this attractor is the same as the unique invariant set, Af , obtained
(above) by purely non-probabilistic methods. This can be seen as follows: given
any µ ∈ P(X), define µt = M t(µ) for t = 0, 1, 2, . . .. Then, if the support of
µ is a compact set, we have (by Proposition 12.8.2, p. 435 of Lasota and Mackey
[39]) ( support of µt) = T t ( support of µ). Applying this result to µf , we have
( support of µf ) = T ( support of µf ), so that (since Af is the unique fixed point
of T ), ( support of µf ) = Af .

2.2 One sector Log-Cobb-Douglas optimal growth

Let us recall the formulation of the one-sector growth model with a Cobb-Douglas
production function G(x) = xα, 0 < α < 1, with a representative decision maker’s

existence of the invariant measure for the category of affine maps, while allowing the probabilities to
depend on the state and be Markovian. For Lipschitz maps, which are not necessarily contractive, but
are “contracting on average”, the existence and uniqueness of an invariant distribution µf to which the
iterates Mt (µ) converge weakly, can be established. For a recent survey of results along these lines
see, for example, Diaconis and Freedman [15].
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utility given by u(c) = ln c. Suppose that an exogenous perturbation may reduce6

production by some parameter 0 < k < 1 with probability p > 0 (the same for
all t = 0, 1, . . .). This independent and identically distributed random shock enters
multiplicatively into the production process so that output is given by Gr(x) = rxα

where r ∈ {k, 1}. The dynamic optimization problem can be explicitly written as
follows:

max E0

∞∑
t=0

βt ln ct

where 0 < β < 1 is the discount factor, and the maximization is over all consump-
tion plans c = c0, c1, . . . such that for t = 0, 1, 2, . . .

ct = rtx
α
t − xt+1, ct ≥ 0, xt ≥ 0

and x0, r0 are given.
It is well known that the optimal policy for the concave problem just described

is g(x, z) = αβrxα (see [59]); i.e. the plan xt generated recursively by

xt+1 = g(xt, rt) = αβrtx
α
t

is optimal.
Consider now the random dynamical system obtained by the following loga-

rithmic transformation of xt:

yt = −1 − α

ln k
lnxt + 1 +

lnα + lnβ

ln k
.

The new variable yt, associated with xt, evolves according to a linear policy, so
that

yt+1 = αyt + (1 − α)
(

1 − ln rt

ln k

)
,

which can be rewritten as{
yt+1 = αyt with probability p
yt+1 = αyt + (1 − α) with probability 1 − p

Define the maps f0, f1 from [0, 1] to [0, 1] by:{
f0(y) = αy
f1(y) = αy + (1 − α). (9)

It is useful to note here that the map f0 corresponds to the case where the shock, r,
takes the value k; and the map f1 corresponds to the case where the shock, r, takes
the value 1. Denote (p, 1 − p) by (p0, p1). Then (f0, f1), together with (p0, p1) is
an iterated function system over the interval [0, 1]. The maps fz , for z ∈ {0, 1}, are
clearly affine (or similarities, as they are one-dimensional) and since 0 < α < 1,
they are contractions on [0, 1]. Thus, we can apply the methods of Section 2.1
directly to our IFS, and obtain the following proposition, which summarizes for
future reference the main results regarding the invariant distribution associated with
our IFS.

6 The same framework works for a perturbation that “increases” production: k > 1.
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Proposition 1 Consider the IFS described by [0, 1], (f0, f1) , (p0, p1) .

i) There is a unique compact set Af ⊂ [0, 1], such that f0(Af ) ∪ f1(Af ) = Af .
ii) For any compact set A, denoting At = T t(A) for t = 0, 1, 2, . . ., we have

A0 ⊃ A1 ⊃ A2 ⊃ . . . ⊃ Af whenever T (A) ⊂ A.
iii) There is a unique probability distribution µf on ([0, 1],B ([0, 1])) satisfying the

functional Equation (5), that is,

µf (A) = p0µf

(
f−1
0 (A)

)
+ p1µf

(
f−1
1 (A)

)
for all A ∈ B ([0, 1]) .

Further, Af is the support of µf .
v) For µ ∈ L ([0, 1]), denoting µt = M t(µ) for t = 0, 1, 2, . . ., L(µt, µf ) → 0

as t → ∞, and further µt converges weakly to µf .

3 Nature of the stochastic steady state: discussion

In this section, we provide a preliminary discussion on the nature of the stochastic
steady state (invariant distribution) obtained in Section 2. This heuristic material
helps us to proceed with the formal presentation of the main results of the paper in
the next three sections.

Our discussion pertains to three sub-topics. First, we comment on the support
of the invariant distribution, and how this is related to “overlaps”, or lack of it, of the
IFS. Second, we relate the study of our iterated function system to the analysis of a
certain infinite series, which we refer to as the Erdös series. Third, we summarize
what is known in the mathematics literature regarding the behavior of the Erdös
series (equivalently the iterated function system).

3.1 The support of the invariant distribution

The graphs of the functions given by (9), show that for 0 < α < 1/2, the image
sets of the two functions f0 and f1 are disjoint, a situation which can be described
as the “non-overlapping” case (see Fig. 1a). In this case, the “gap” between the two
image sets (in the unit interval) will “spread” through the unit interval by successive
applications of the maps (9). Thus, one would expect the support of the invariant
distribution to be “thin” (with zero Lebesgue measure) and have features of the
usual Cantor ternary set; in fact, for α = 1/3, the support is precisely the Cantor
ternary set.

On the other hand, for 1/2 ≤ α < 1, the image sets of the functions f0 and f1
have a non-empty intersection. We can refer to this as the “overlapping” case (see
Fig. 1b). Here, the successive iterations of the overlap can be expected to “fill up”
the unit interval, so the invariant distribution should have full support.

The above heuristics are actually seen to be valid as we demonstrate in the
following sections.

It is important to remark that this construction does not depend on the magnitude
of the discount factor β nor on the amplitude of the shock k, but only on the
technological parameter α. The discount factor β only shifts the support of the
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a

b

Figure 1a,b. Plot of yt+1 = fz (yt), z ∈ {0, 1}: a α = 1/3, non overlapping images; b α = 2/3,
overlapping images

invariant distribution of the original model over the real line, while the exogenous
shock k affects its amplitude.

3.2 Erdös series

Let Ω be the space of all infinite sequences of zeros and ones; that is, an element of Ω
is ω = (ω0, ω1, ω2, . . .) where ωt∈ {0, 1} for t = 0, 1, . . .. Let F be the smallest σ-
algebra containing all the finite n-cylinders (ω0, ω1, . . . , ωn−1) × {0, 1}× {0, 1}×
· · · and P the product measure over F generated by the probability over {0, 1} such
that Pr (0) = p and Pr (1) = 1 − p. Then we have a probability space (Ω, F , P )
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which we refer to as a Bernoulli space. Define the projection εt (ω) = ωt. Then
{ωt} is a sequence of independent and identically distributed random variables on
(Ω, F , P ).

Using the sequence {ωt}, we can write our iterated function system as:

yt+1(ω) = αyt(ω) + (1 − α)ωt. (10)

By Proposition 1, there is a unique limiting distribution µf to which the random
variable yt(ω) converges weakly, starting from any initial probability over y0(ω).
For simplicity, consider the Dirac measure that concentrates the whole probability
over y0(ω) = 0. Iteration of (10) leads to

yt(ω) = (1 − α)
t−1∑
s=0

ωsα
t−s−1.

Since ωs are independent random variables, the probability distribution of yt(ω) is
the same as that of the random variable

(1 − α)
t−1∑
s=0

ωsα
s,

which converges almost everywhere to the series

Πα(ω) = (1 − α)
∞∑

s=0

ωsα
s (11)

which is called Erdös series. Since almost everywhere convergence implies weak
convergence (see, e.g., Theorem 25.2, p. 284 in [9]), the distribution of (11) is the
same as the invariant distribution, µf , of the system (10).

Note that this construction allows us to interpret µf as the image probability of
P through the map Πα : Ω → [0, 1].

The Erdös series (11) is usually written in a slightly different format:

∞∑
s=0

±αs, (12)

it being understood that the minus sign is taken with probability p and the plus sign
with probability (1−p). Note that (12) is the same as (11) where random variables
ω′

t ∈ {−1, 1} are used in place ofωt ∈ {0, 1} and the image set of the corresponding
IFS is the translation of interval [0, 1] to the interval [−1/(1 − α), 1/(1 − α)]. Thus,
the nature of the distribution µf of (11) can be studied by analyzing the distribution
of the random variable (12).
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3.3 Brief review of the mathematical literature

Until a few years ago, the mathematical literature focused on the problem of ana-
lyzing the nature of the distribution of the random variable given in (12) exclusively
in the special case where p = 1/2. The topic is known as the study of “symmetric
infinite Bernoulli convolutions”. Only very recently some important results have
been extended to the asymmetric case p �= 1/2. All this stream of research has been
striving around the fundamental question on deciding for what values of α, µf is
absolutely continuous, and for what values of α, µf is singular. For an exhaustive
mathematical survey on the whole history of Bernoulli convolutions, see [50].

It is known, in the symmetric case, that the distribution function is “pure”; that
is, it is either absolutely continuous or it is singular (Jessen and Wintner [36]).
Further, Kershner and Wintner [37] have shown that if 0 < α < 1/2, the support
of the distribution function is a Cantor set of Lebesgue measure zero, and therefore
the distribution function is singular. For α = 1/2, one gets the uniform distribution,
which is not singular.

For the symmetric case p = 1/2, denote by S⊥ the set of α ∈ (1/2, 1) such
that µf is singular. It was often conjectured that the distribution function should
be absolutely continuous with respect to Lebesgue measure when 1/2 < α < 1.
Wintner [62] showed that if α is of the form (1/2)1/k where k ∈ {1, 2, 3, . . .}, then
the distribution function is absolutely continuous. However, in the other direction,
Erdös [22] showed that when α is the positive solution of the Equation α2+α−1 =
0, so that α = (

√
5 − 1)/2, then α ∈ S⊥. More generally, the results of Erdös [22]

may be described as follows. Recall that an algebraic number is the solution of a
polynomial, all of whose coefficients are integers, and whose leading coefficient is
either 1 or −1. An algebraic number is called a Pisot-Vijayaraghavan number when
all its Galois conjugates are less than one in absolute value. Erdös [22] showed that
when α is the reciprocal of a Pisot-Vijayaraghavan number, then α ∈ S⊥. It is an
open question whether these numbers, which form a closed countable set, constitute
all of S⊥.

Erdös [23] also showed that S⊥ ∩ (ξ, 1) has zero Lebesgue measure for some
ξ < 1, so that absolute continuity of the invariant distribution obtains for (almost
every) α sufficiently close to 1. A conjecture that emerged from these findings is
that the set S⊥ itself should have Lebesgue measure zero.

Since the contributions of Erdös, there were a few additional results for the case
1/2 < α < 1, which are surveyed in Garsia [29]. In their brief discussion of this
problem, Dubins and Freedman [17] state that deciding whether the distribution is
singular or absolutely continuous for α > 1/2 is a “famous open question”. And
Edgar [19], briefly surveying this topic, refers to it as an “Erdös problem”.

Solomyak [56] made a real breakthrough when he showed that S⊥ has zero
Lebesgue measure. More precisely, he established that for almost every α ∈
(1/2, 1), the distribution has density in L2 (R) and for almost every α ∈ (2−1/2, 1

)
the density is bounded and continuous. A simpler proof of the same result was sub-
sequently found by Peres and Solomyak [51]. A stronger result has been very lately
achieved by Peres and Schlag [49], where they prove that the Hausdorff dimen-
sion (see Sect. 5.1 in the sequel) of the set S⊥ ∩ (α, 1) is less than one for all



Stochastic steady state 51

1/2 < α < 1. Note, however, that this still does not settle Garsia’s [29] conjec-
ture that the distribution is absolutely continuous for all but a countable number of
values of α in (1/2, 1).

Very recent contributions to this literature deal with the asymmetric case
p �= 1/2. Mauldin and Simon [43] extended Jessen and Wintner’s [36] find-
ing on “purity” of the distribution function also for p �= 1/2. Peres, Schlag and
Solomyak [50] further pushed the argument to finite families of contracting simili-
tudes (namely, IFS with m ≥ 2 affine maps) by showing that if the limiting distri-
bution ν is not singular, then it is absolutely continuous with respect to Lebesgue
measure and the restriction of Lebesgue measure to the support of ν is absolutely
continuous with respect to ν.

Especially useful for our purposes, is the contribution by Peres and Solomyak
[52], established for a generic family of contracting similitudes. We restate here their
result in terms of our IFS given by (9). First, they found that µf is singular below the
“entropy” curve, that is for values of parameters (α, p) such that 0 < α < pp(1 −
p)(1−p), while it is absolutely continuous for almost every pp(1−p)(1−p) < α < 1
whenever 1/3 ≤ p ≤ 2/3. Moreover, for 1/3 ≤ p ≤ 2/3, letting 1 < γ ≤ 2,

for almost every [pγ + (1 − p)γ ]1/(γ−1) ≤ α < 1, µf has density in Lγ . Finally,
this property is further refined by the following necessary smoothness condition:
for all p and all γ > 1, if µf is absolutely continuous with density in Lγ , then

α ≥ [pγ + (1 − p)γ ]1/(γ−1). We shall discuss in more detail these last findings in
Section 6.

4 Singular invariant distributions

In this section, we provide an analysis of the invariant distributions when the tech-
nological parameter, α, is “low”, which in our case translates to α ∈ (0, 1/2]. Thus,
our results may be viewed as extensions of the mathematical literature reviewed in
Section 3.3 to the case where p is not necessarily equal to 1/2.

In Section 4.1, we briefly review the case where α ∈ (0, 1/2). Here, the theory
for p �= 1/2 is entirely analogous to the theory for p = 1/2, since, as we have
noted before, the support of the invariant distribution is a Cantor set of Lebesgue
measure zero, and this support is independent of the magnitude of p.

In Section 4.2, we consider the “borderline” case where α = 1/2. Here the
theory for p �= 1/2 is entirely unlike the theory for p = 1/2. While p = 1/2
generates the uniform invariant distribution (which is, of course, absolutely contin-
uous), p �= 1/2 always generates a singular invariant distribution. However, unlike
in Section 4.1, this singular distribution has full support.

Section 4.3 is devoted to an improvement of the existing theory. By using the
relationship with Erdös series discussed in Section 3.2, we show that, for the whole
range α ∈ (0, 1/2], not only are the invariant measures singular with respect to
Lebesgue measure, but they are also mutually singular. This, of course, indicates a
high sensitivity of the limiting distribution with respect to changes in the parameter
p. When α ∈ (0, 1/2), not only does the support (attractor) exhibit fractal fea-
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tures, but also measures with the same support concentrate over sets with empty
intersection for different probabilities p and p′.

4.1 Singular distributions of the cantor type

Consider the case where the parameter, α, has a value in (0, 1/2). Recall the Barns-
ley operator (3) and define

A0 = [0, 1] , and An+1 = T (An) for n = 0, 1, . . .

Then, we have

A1 = T (A0) = [0, α] ∪ [1 − α, 1],
A2 = T (A1) = [0, α2] ∪ [(1 − α), (1 − α) + α2]

∪[α(1 − α), α] ∪ [(1 − α) + α(1 − α), (1 − α) + α].

Note that the Lebesgue measure of A0 is 1, that of A1 is 2α, and that of A2 is
22α2. By induction, one can verify that An = Tn([0, 1]) consists of 2n intervals,
each of Lebesgue measure αn, so that λ(An) = 2nαn → 0 as n → ∞. Since, by
Proposition 1 (ii), A0 ⊃ A1 ⊃ · · · ⊃ Af , where Af is the attractor of the IFS, we
have λ(Af ) = 0. Since Af is also the support of the invariant distribution, µf , we
clearly have µf (Af ) = 1. Thus, µf is singular with respect to Lebesgue measure.

The distribution function corresponding to µf , when α = 1/3, is usually called
a Cantor function (since its support is precisely the Cantor ternary set) or a Lebesgue
function (since it was used by Lebesgue to demonstrate the need for absolute con-
tinuity in the fundamental theorem of calculus). The graph of the distribution func-
tion, corresponding to µf , for α ∈ (0, 1/2) is referred to as the “Devil’s Stair-
case”(see Fig. 2).

4.2 Singular invariant distributions of the Hellinger type

Consider now the case where the technological parameter α = 1/2. In this case,
the invariant distribution function, F , is the unique7 distribution function over [0, 1]
satisfying the functional equation:

F (x) =
{

pF (2x) for x ∈ [0, 1/2)
p + (1 − p)F (2x − 1) for x ∈ [1/2, 1] (13)

If p = 1/2, then it is easy to see that F (x) = x for all x ∈ [0, 1] satisfies (13), and
so the invariant distribution function, F , must be the uniform distribution. In the
optimal growth literature, this particular case is discussed in [46].

For p �= 1/2, the function, F , that is generated by (13) has been extensively
discussed in the mathematics literature as an example of a continuous, strictly

7 Uniqueness can be shown through the standard IFS argument. As a matter of fact, the graph of F is
the invariant set of two linear contraction maps from [0, 1]2 to itself, defined by (x, y) �−→ [(1/2)x, py]
and (x, y) �−→ [(1/2)x + 1/2, (1 − p)y + p].
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a

b

Figure 2a,b. Devil’s staircase: a α = 1/3 and p = 1/3; b α = 1/3 and p = 2/3

increasing function, for which the derivative (which exists Lebesgue almost every-
where) vanishes almost everywhere. This necessarily means that F represents a
measure that is singular with respect to the Lebesgue measure.

As Brown [12] points out, this type of function is properly attributed to Hellinger
[32] in whose thesis it first appears. The function, F , is obtained as the limit of a
sequence of piecewise linear functions, and the relevant properties of F are then
verified from the properties of the converging sequence of functions. Hellinger’s
construction, which was subsequently generalized by Salem [55], is discussed in
detail in Riesz and Sz-Nagy [53], Hewitt and Stromberg [33] and Asplund and
Bungart [2]. It is also discussed, from the probabilistic viewpoint, in Billingsley
[9].
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De Rham [14] deduced the properties of F directly from the functional Equa-
tion (13) governing F , but his presentation is quite terse, as is quite clear from the
more comprehensive account of it in Yamaguti, Hata and Kigami [63].

Takacs [60] developed a method consisting in writing down a function, F ,
in explicit form, as an infinite series, and verifying that it is continuous, strictly
increasing and singular with respect to Lebesgue measure. Given this result, one
can show that the solution of (13) is singular by simply verifying that his F satisfies
(13).

Given any x ∈ [0, 1], we can write it uniquely as

x =
∞∑

r=0

2−ar (14)

where a0 < a1 < · · · < ar < · · · are positive integers8. Define δ = (1/p) − 1, so
that δ > 0, and δ �= 1 (since p �= 1/2). Now define for x given by (14),

F (x) =
∞∑

r=0

δr(1 + δ)−ar (15)

and F (0) = 0. Then, by the theorem of Takacs [60], F is strictly increasing,
continuous, and its derivative is zero Lebesgue almost everywhere in the interval
[0, 1]. It remains to verify that F satisfies (13).

For x = 0, we have F (x) = pF (2x), as required in (13). Next, pick any
x ∈ (0, 1/2]. Then, a0 ≥ 2 in (14), and

2x =
∞∑

r=0

2−(ar−1) (16)

with a0 − 1 < a1 − 1 < · · · < ar − 1 < · · · positive integers. Thus, by definition

(15), we have F (2x) =
∞∑

r=0
δr(1 + δ)−(ar−1) = (1 + δ)F (x) = (1/p)F (x) which

verifies (13). Finally, pick any x ∈ (1/2, 1]. Then a0 = 1, a1 ≥ 2 in (14), and so
by (16),

(2x − 1) =
∞∑

r=0

2−(ar+1−1)

with a1 − 1 < a2 − 1 < · · · < ar − 1 < · · · positive integers. Thus, by definition
(15), we have

p+(1−p)F (2x−1) =
1

1 + δ
+

∞∑
r=0

δr+1(1+δ)−ar+1 =
∞∑

r=0

δr(1+δ)−ar = F (x)

which verifies (13).
A graph of F is indicated in Figure 3.

8 Note that (14) corresponds to the dyadic expansion of x, i.e., the representation in base-2 of x,
where all multiple representations (such that they are all zero after a certain point) are eliminated.
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a

b

Figure 3a,b. Hellinger distributions: a α = 1/2 and p = 1/6; b α = 1/2 and p = 3/4

4.3 Mutually singular distributions

In Section 3.2 we have seen that the invariant probability measure of our IFS can
be constructed as the image probability of the Bernoulli space (Ω, F , P ) through
the map Πα : Ω → [0, 1] defined in (11) as Πα(ω) = (1−α)

∑∞
t=0 ωtα

t. We now
use this fact to prove that for all α ∈ (0, 1/2], two invariant measures are mutually
singular whenever different probabilities p and p′ are adopted in the IFS. (For the
standard definition of mutual singularity, see [7], p. 374). The idea is to “transfer”
this property from the space (Ω, F , P ) (on which it is well-known to be true) to
the image measure of Πα.
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For each ω ∈ Ω and each n ∈ N, define

N (ω, n) = # {0 ≤ t ≤ n − 1 : ωt = 1} .

Let q = (1−p) and consider the set S (q) ⊂ Ω of sequences such that the frequency
of 1’s is q:

S (q) =
{

ω ∈ Ω : lim
n→∞

N (ω, n)
n

= q

}
. (17)

Of course, S (q) ∩ S (q′) = ∅ for q �= q′. By the strong law of large numbers (see
[9], p.70), it follows that for each p ∈ (0, 1), P (S (1 − p)) = 1. As a consequence,
each pair of Bernoulli probabilities P and P ′ over (Ω, F) generated by marginal
probabilities (Pr (0) = p, Pr (1) = 1 − p) and (Pr (0) = p′, Pr (1) = 1 − p′) re-
spectively, with p �= p′, are mutually singular.

To stress dependence of the invariant measure on parameter p, let us denote the
image measure of Πα (our invariant distribution) by µp

f .
For each α ∈ (0, 1), we can introduce a metric, ρα, on the space Ω, given by

ρα (ω, ω′) = α|ω∧ω′| (18)

where |ω ∧ ω′| = min {t : ωt �= ω′
t}.

Since, for all α ∈ (0, 1) and all pairs ω, ω′ ∈ Ω,

|Πα(ω) − Πα(ω′)| ≤ (1 − α)α|ω∧ω′|
∞∑

t=0

αt = ρα (ω, ω′) ,

we note that Πα is a Lipschitz continuous map from the metric space (Ω, ρα) to
the metric space([0, 1] , |·|), with Lipschitz constant 1. Moreover, if we restrict our
attention only to α ∈ (0, 1/2), a stronger property holds:

|Πα(ω) − Πα(ω′)| ≥ (1 − α)α|ω∧ω′|
(

1 −
∞∑

t=1

αt

)
= (1 − 2α) ρα (ω, ω′) ,

that is, Πα is bi-Lipschitz for α < 1/2. This implies that Πα is one-to-one, and
thus invertible, for α ∈ (0, 1/2).

A special situation occurs when α = 1/2: in this case Πα is “almost” one-to-
one. To see this, note that when α = 1/2, Πα is the base-2 representation of some
real number x ∈ [0, 1]:

x =
∞∑

r=0

2−ar ≈ 0.ω0ω1ω2 . . .

where a0 < a1 < · · · < ar < · · · are positive integers (corresponding to values
of ωt in (11) equal to one). By dropping double representations, we get a (re-
stricted) one-to-one map. For our purposes, it is useful to note that the inverse is
not continuous but certainly measurable.

The discussion above is enough to prove the main result of this section.
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Proposition 2 For each α ∈ (0, 1/2], the invariant distributions
{

µp
f : p ∈ (0, 1)

}
are mutually singular.

Proof. We have seen that for α ∈ (0, 1/2], the map Πα is invertible. If α < 1/2, it
is a consequence of bi-Lipschitz property. If α = 1/2, we can suitably restrict the
domain by dropping a countable set of P -measure zero. The inverse map Π−1

α is
measurable. Take two Bernoulli probabilities over Ω, P and P ′ generated by p and
p′, with p �= p′. By the discussion at the beginning of this section, P and P ′ are
mutually singular; that is, two sets Ω1, Ω2 exist so that Ω = Ω1∪Ω2, Ω1∩Ω2 = ∅

and P (Ω1) = P ′ (Ω2) = 0. Consider the images of these two sets through Πα:
clearly, Πα (Ω1) and Πα (Ω2) are measurable, disjoint and cover Πα (Ω). Since

µp
f (Πα (Ω1)) = P (Ω1) = 0 and µp′

f (Πα (Ω2)) = 0, the two image measures are
mutually singular.

Note that, through a different argument, for α = 1/2 we have established
singularity of the Hellinger distribution functions discussed in Section 4.2. As
a matter of fact, since for p = 1/2 the (uniform) invariant distribution is itself
the Lebesgue measure on [0, 1], by Proposition 2, for all p �= 1/2 the invariant
distribution must be singular with respect to Lebesgue measure.

5 A class of singular distributions for high values of α

We now carry on our analysis by investigating the behavior of the invariant distri-
bution for values α > 1/2. From Figure 1b, it is clear that, due to the overlapping
of images of the IFS, the study of the invariant distribution becomes more difficult.

This section is confined to a partial extension of the results on singularity de-
veloped before. It turns out that for the combination of parameter values (α, p)
satisfying

1/2 < α < pp(1 − p)(1−p) (19)

the invariant distribution is necessarily singular. Coupled with singularity results
already obtained in the previous sections for 0 < α < 1/2 (plus case α = 1/2 and
p �= 1/2), we can thus assert that for all pairs (α, p) such that

0 < α < pp(1 − p)(1−p)

the invariant distribution is singular with respect to Lebesgue measure.
This result leads to a general observation on existence of singular invari-

ant distributions in our context. When the entropy of the Bernoulli process,
− (p ln p + (1 − p) ln(1 − p)) (see [8] ), is relatively “low”, which in our con-
text occurs when it is less than ln(1/α), then the invariant distribution is singular.
Since the highest value of the entropy is ln 2, this condition is automatically sat-
isfied when α < 1/2. In the special case α = 1/2, the entropy is smaller than
ln(1/α) for all p except p = 1/2, and so the condition is satisfied for all p �= 1/2.
Thus, the results of Sections 4.1 and 4.2 can be viewed as particular cases of this
general observation.
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It is important to remark that singularity below the entropy curve is a well known
property in the mathematical literature, linking entropy and dimension theory. For
our case of two possibilities, with probabilities p and (1 − p), it follows from the
analysis of Besicovitch [5]. Eggleston [20] generalized the result of Besicovitch to
the case of any finite number of possibilities. A general version of the statement
above can be established, using the Shannon-McMillan-Breiman Theorem. This
approach is followed in Billingsley [7].

Here we provide a simplified proof without resorting directly to properties of the
entropy. We make use of only the notion of Hausdorff dimension, which we briefly
review in Section 5.1. In Section 5.2, we return to the sequence space introduced
in Section 3.2, and show how the Hausdorff dimension of a “probability 1 set” can
be computed to be less than one. This, in turn, means that the Lebesgue measure
of this set is zero, and leads to the singularity of the invariant distribution.

5.1 Hausdorff dimension

Let (X, d) be a metric space. For F ⊂ X , and s ∈ R+, the s-dimensional Hausdorff
outer measure is denoted by Hs(F ; d) and is defined as follows. A collection A of
subsets of X is called a countable cover of F if

F ⊂
⋃

A∈A
A

and A is a countable family of sets. Given any δ > 0, a countable cover A of F is
a δ-cover if |A|d ≤ δ for all A ∈ A, where |A|d denotes the diameter of A:

|A|d = sup
x,y∈A

d(x, y)

We define
Hs

δ(F ; d) = inf
∑
A∈A

(|A|d)s

where the infimum is taken over all countable δ-covers A of the set F . Hs
δ(F ; d)

is non-increasing in δ, and one can define:

Hs(F ; d) = lim
δ→0

Hs
δ(F ; d)

as the s-dimensional Hausdorff outer measure of F (given the metric d).
A useful result on Hausdorff outer measures is that for R (with the usual dis-

tance), the one-dimensional Hausdorff outer measure of any set coincides with
the Lebesgue outer measure of that set (see, for example, [9], p. 208, or [18], p.
148-149).

Suppose δ < 1, then, given any δ-cover A, for any pair s < t,∑
A∈A

(|A|d)t =
∑
A∈A

(|A|d)s (|A|d)t−s ≤ δt−s
∑
A∈A

(|A|d)s
,

and so Ht(F ; d) ≤ δt−sHs(F ; d). Hence, Ht(F ; d) > 0 implies Hs(F ; d) = ∞
and Hs(F ; d) < ∞ implies Ht(F ; d) = 0. This means that Hs(F ; d) is decreasing
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Figure 4. Plot of Hs (F;d) where s0 ≡ dim(F ; d)

in s and is everywhere +∞ or 0 but, at most, at a single point s0 ≥ 0, where
it may satisfy 0 < Hs0(F ; d)< ∞. This argument leads to a useful definition of
dimension. The Hausdorff-Besicovitch dimension of F is given by

dim(F ; d) = inf{s : Hs(F ; d) = 0} = sup{s : Hs(F ; d) = ∞}

Clearly, if s0 ≡ dim(F ; d) < ∞, then for all s > s0, Hs (F ; d) = 0; and if
s0 ≡ dim(F ; d) > 0, then for all 0 ≤ s < s0, Hs (F ; d) = ∞.

The relationship between s-dimensional Hausdorff outer measure and Haus-
dorff dimension of a set can be depicted as in Figure 4.

A useful result (see [25] or [18]) on Hausdorff dimension is the following. Let
(X, d) and (Y, d′) be metric spaces, and f a Lipschitz continuous map from X to
Y . Then, for every F ⊂ X ,

dim (f (F ) ; d′) ≤ dim(F ; d).

5.2 singularity for low entropy

Recall the probability space (Ω, F , P ) discussed in Section 3.2, the metric ρα

defined in (18) and the map Πα defined in (11). We will be concerned, in particular,
with ρα for α ∈ (1/2, 1), and with ρ1/2, which (for convenience) we will denote
by ρ.

We have (deliberately) included the metric being used in our definition (and
notation) of the Hausdorff dimension, since this dimension clearly varies with
the metric. From this perspective, our choice of metric ρα for the space Ω is not
accidental. Since ρα depends on α (that is, on the “degree of overlapping” of the
images of the maps f0 and f1 in (9)], it turns out that the dimension of subsets of Ω
depends on the contraction ratio of our IFS. This will play a crucial role in the main
result of this section. The following relation indicates how the dimension varies as
we employ different metrics ρα, that is, different contraction coefficients α.
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Let F ⊂ Ω, and 0 < α < 1 be given. Then we have the relation

dim(F ; ρα) =
[
ln (1/2)

lnα

]
dim(F ; ρ). (20)

To see this, denote [ln (1/2) / lnα] by b, and note that for s ∈ R+, and A a δ-cover
of F ,

Hsb
δ (F ; ρα) = inf

∑
A∈A

(
|A|ρα

)sb

= inf
∑
A∈A

(
|A|ρ

)s

= Hs
δ(F ; ρ)

Thus, letting δ → 0, we get

Hsb(F ; ρα) = Hs(F ; ρ)

and (20) follows consequently.
Recall from Section 4.3 that Πα is Lipschitz with Lipschitz constant 1. Thus,

we have for every F ⊂ Ω,

dim(Πα(F ); |·|) ≤ dim(F ; ρα). (21)

We will now use again the set S(q) ⊂ Ω defined in (17). We will show that (by
the law of large numbers) S(q) is a set of P -measure 1 and of Hausdorff dimension
less than 1 whenever condition (19) holds.

If we consider the set S(q) in the metric space (Ω, ρ) (recall that ρ1/2 is denoted
by ρ), then we have the Besicovitch-Eggleston-Good result9 that

dim(S(q); ρ) =
(p ln p + q ln q)

ln(1/2)
(22)

Using (20) and (22) we have

dim(S(q); ρα) =
(p ln p + q ln q)

ln(α)
.

It follows that, under (19),

dim(S(q); ρα) < 1. (23)

Using (21) and (23), we obtain

dim(Πα(S(q)), |·|) < 1. (24)

By definition of Hausdorff dimension, (24) implies that

H1(Πα(S(q)), |·|) = 0

9 This important result was established for the case of two possibilities by Besicovitch [5]. For an
arbitrary finite number of possibilities, it was conjectured by Good [30], and proved by Eggleston
[20]. For alternative approaches, see Billingsley ([7], [8]), and Edgar [18]. Note that (p ln p + q ln q)
measures the negative of the metric entropy of a Bernoulli process with probabilities p and q. Therefore,
the ratio on the right side of (22) is the metric entropy relative to its maximum value ln 2.
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and since H1 coincides with Lebesgue outer measure, λ∗, we have

λ∗ (Πα(S(q))) = 0.

In particular then Πα(S(q)) is a Lebesgue measurable set (in the sense of
Caratheodory); see [54], p. 58. There is then a Borel set, B ⊂ [0, 1], such that
Πα(S(q)) ⊂ B, and λ∗(B) = 0; see Proposition 5, p. 58 in [54]. Thus λ(B) = 0,
where λ is Lebesgue measure on R.

Now, we will show that the Borel set B obtained above has µf (B) = 1, where
µf is the invariant distribution of our IFS. To see this, note that, by the strong law
of large numbers, P (S(q)) = 1. By continuity of Πα on (Ω, ρα), Π−1

α (B) is a
Borel set of Ω, and Π−1

α (B) ⊃ S(q). Thus,

µf (B) = P (Π−1
α (B)) ≥ P (S(q)) = 1

Since B is a Borel set in [0, 1] with λ(B) = 0 and µf (B) = 1, µf is singular with
respect to Lebesgue measure. We have thus demonstrated the following.

Proposition 3 For 1/2 < α < pp (1 − p)1−p, µf is singular with respect to
Lebesgue measure.

6 Absolutely continuous invariant distributions

It remains to examine properties of the invariant distribution for pairs (α, p) satis-
fying (1):

pp (1 − p)1−p
< α < 1.

As we have already indicated in Section 3.3, for p = 1/2 and for Lebesgue
almost every α ∈ (1/2, 1), Solomyak [56] showed that the distribution has density
in L2. His original proof was based on Fourier transforms and the problem of
estimating multiple zeros of certain power series. The method of Fourier transform
applies naturally to the symmetric case p = 1/2 and proves useful in developing a
theory in L2.

Subsequently, Peres and Solomyak [51] developed an alternative method, based
on differentiation of measures instead of Fourier transforms, to prove the same
theorem as in [56]. The latter approach (by-passing L2 theory) actually opened a
way for some extensions to the asymmetric case p �= 1/2, where L2 theory fails to
capture the main features of the invariant distribution in some circumstances.

The main results along this direction are worked out by Peres and Solomyak
[52] and may be summarized as follows. By confining the range of values for the
probability p to the interval [1/3, 2/3], the authors established that the invariant dis-
tribution µf is generically absolutely continuous above the entropy curve, namely
for almost every pp (1 − p)1−p

< α < 1. Furthermore, again for 1/3 ≤ p ≤ 2/3,
µf turns out to exhibit gradually increasing smoothness as the technological pa-
rameter α rises above the entropy curve, more specifically, for 1 < γ ≤ 2 and for

almost every [pγ + (1 − p)γ ]1/(γ−1) ≤ α < 1, µf has density in Lγ . Note that a
theory only in L2 would be far too stringent to investigate this last behavior.
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This seems to be the present state of art, at least pertaining to a characterization
in terms of (generic) absolute continuity above the entropy curve. More work is
needed to extend the above statements to values of p outside the interval [1/3, 2/3];
perhaps, as indicated by Peres and Solomyak, a new approach may be needed.

However, another result in [52], stated in terms of necessary smoothness con-
dition, sheds some more light on this “gradually increasing smoothness” of µf for
higher values ofα. The authors, indeed, state that for allp and allγ > 1, ifµf is abso-

lutely continuous with density in Lγ , then necessarily α ≥ [pγ + (1 − p)γ ]1/(γ−1).
In this section, we confine ourselves to a brief description of the basic ingredients

necessary to deal with our specific problem. We provide some material on Fourier
Transforms in Section 6.1, while Section 6.2 shows how this material works in
Solomyak’s [56] construction for the symmetric case and how some method of
estimating multiple zeros of power series can be used. Finally, Section 6.3 discusses
the extensions to the case p �= 1/2 obtained in [52].

6.1 Fourier transforms of the Erdös series

Instead of looking at the invariant distribution µf , of our IFS, or equivalently the
invariant distribution of the Erdös series (11) discussed in Section 3.2, we find it
convenient to work with a class of series that includes (12). We describe this (class
of) Erdös series as follows.

Let J ⊂ Z+ and εj (for j ∈ J) are independent and identically distributed
random variables taking values on the set D = {−1, +1}, with P (εj = −1) = p
and P (εj = +1) = q. Suppose n is a positive integer such that j ∈ J if and
only if j + n ∈ J . Define � = #(J ∩ [0, n − 1]); then J is a union of � arithmetic
progressions with difference equal to n. For example, with J = Z+, we have n = 1
and � = 1; with J = {0, 1, 3, 4, 6, 7, 9, . . .}, every third integer is omitted, so n = 3
and � = 2.

We define the random variable

Y J
α =

∑
j∈J

εjα
j (25)

Note that this is the same as the random variable defined in (12), when J = Z+.
However, we need also to consider “rarefied” versions of the Erdös series here,
which is the reason for defining the class of Erdös series given by (25). For J = Z+,
we denote Y J

α by Yα.
Given J and α, let us denote the distribution of Y J

α by η. Its Fourier transform
is given (as the function of the real variable, s) by:

φη (s) =
∫

eisxη (dx) = E

[
eisY J

α

]
= E


∏

j∈J

eisεjαj




By independence of εj , it is easy to obtain

φη (s) =
∏
j∈J

E

[
eisεjαj

]
=
∏
j∈J

[
pe−iαjs + qeiαjs

]
. (26)
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Working with the Fourier transform of η rather than η itself is primarily moti-
vated, in the current context, by the “inversion formula”. In particular, if

∫ ∞

−∞
|φη(s)| ds < ∞ (27)

then the distribution η has a continuous density, given by

f(x) = (1/2π)
∫ ∞

−∞
e−isxφη(s)ds.

See Billingsley [9], p. 296-304, for the basic properties of Fourier transforms of
probability measures (known as characteristic functions) on the real line.

Since |φη(s)| ≤ 1 for all s ∈ R, if (27) holds (φη ∈ L1), we also have

∫ ∞

−∞
|φη(s)|2 ds < ∞ (28)

so that φη ∈ L2. Thus, a natural question is whether (28) itself can ensure the
absolute continuity of η. This is indeed possible, as shown by the “L2-theory” of
Fourier transforms. (See, for example, Chung [13], p. 159). Briefly, if φη satisfies
(28), then by Plancherel’s theorem (see, for example, Feller [27], p. 599-601), there
exists f ∈ L2 such that:

∫ x

0
f(u)du =

1√
2π

∫ ∞

0

(
eisx − 1

−is

)
φη(s)ds

Now, one can use the inversion formula to show that

F (x) − F (0) =
1√
2π

∫ x

0
f(u)du

where F is the distribution function, corresponding to the distribution η.
In view of this, if one can show that for every ε > 0

∫ b−ε

a+ε

[∫ ∞

−∞
|φη(s)|2 ds

]
dα < ∞ (29)

where a < b, then it would follow that for Lebesgue almost every α ∈ (a, b), (28)
holds, and so the distribution η is absolutely continuous, with L2 density.

The results of Solomyak [56], which we discuss in Section 6.2, provides suffi-
cient conditions under which (29) is satisfied, for certain specifications of a and b.
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6.2 The result of Solomyak in the symmetric case p = 1/2

The result of Solomyak [56] that solves the Erdös problem in the symmetric case
is the following.

Theorem 1 (Solomyak) For p = 1/2, the distribution of Yα has a density in L2 (R)
for Lebesgue almost every α ∈ (1/2, 1).

The proof of this theorem rests upon a more general result, which establishes a
sufficient condition for (L2) absolute continuity based on the existence of a certain
type of power series.

Proposition 4 For p = 1/2, the distribution of Y J
α has L2 (R) density for a.e.

α ∈ ((1/2)�/n, τ
)

provided

(1/2)�/n < τ

where τ ∈ (0, 1) is the smallest number for which there exists a power series
g(x) �≡ 0,

g(x) =
∑
j∈J

gjx
j , where gj ∈ {−1, 0, 1},

with g(τ) = g′(τ) = 0.

The specifications required at the end of the last section in order to apply
Fourier transforms theory as in (29), are indeed a = (1/2)�/n and b = τ . To
be more precise, existence of such power series is a sufficient condition for the
following transversality condition to hold on the interval (a, b) ⊂ (0, 1). Say that
the transversality condition holds on (a, b) for a given pair ω, ω′ ∈ Ω if

α �−→ Πα (ω) − Πα (ω′) has no double zero on (a, b) for ω �= ω′.

Here a “double zero” for the difference f (α) = Πα (ω) − Πα (ω′) means α0
such that f (α0) = f ′ (α0) = 0. The graphic interpretation is that the graphs
of functions α �−→ Πα (ω) and α �−→ Πα (ω′) restricted to the interval (a, b),
intersect transversally (if at all).

In order to apply Proposition 4 to obtain Theorem 1, one has to have an efficient
method of isolating “multiple zeros” of power series. Solomyak himself calculates
some lower bounds for such zeros that we shall now exploit to see how Proposition
4 and the use of Fourier transforms yield Theorem 1.

The first step in proving Theorem 1 is to find an interval (a, b) ⊂ (0, 1)
such that the transversality condition holds. We shall see that such an interval
is (a, b) =

(
(1/2)�/n, τ

)
=
(
1/2, 2−1/2

)
; then Proposition 4 states that for a.e.

α ∈ (
1/2, 2−1/2

)
, the distribution µf is absolutely continuous with L2 density.

In order to fill the whole interval (1/2, 1), one must rely on convolutions through
Fourier transform as in (26). Let us see this procedure in some detail.

Take J = Z+, so that � = n = 1 and (�/n) = 1 in Proposition 4. Thus, the first
step tackles directly our Erdös series. Solomyak finds a lower estimation τ > 0.649
for this case. Hence, in view of Proposition 4, the distribution µf of Yα has density
in L2 (R) for almost every α ∈ (1/2, 0.649).
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Next, consider the “rarefied” Erdös series so that every third integer from Z+
is omitted, namely, let J = {0, 1, 3, 4, 6, 7, 9, . . .}, so that n = 3 and � = 2. By
Solomyak’s calculations, the number τ for this rarefied series satisfies τ > 0.713.
Since 2−2/3 ≈ 0.630 < 0.713, Proposition 4 (for �/n = 2/3) is nonempty and thus
for a.e. α ∈ (2−2/3, 0.713

)
the distribution η of Y J

α has L2 density. In this case,
its Fourier transform φη ∈ L2 and since

∣∣φµf

∣∣ ≤ |φη|, we also have φµf
∈ L2.

That is, we have found that for a.e. α ∈ (1/2, 0.649) ∪ (2−2/3, 0.713
)
, µf has L2

density. Note, however, that these two open intervals overlap, as 2−2/3 ≈ 0.630 <
0.649. Moreover, 2−1/2 ≈ 0.707 < 0.713. Therefore, we conclude that for a.e.
α ∈ (1/2, 2−1/2

)
, µf has L2 density.

The second step consists in extending this finding to a.e. α ∈ (2−1/k, 2−1/2k
)

for k = 2, 3, . . .. Then, since 2−1/k → 1 as k → ∞, it follows that µf has L2

density for a.e. α ∈ (1/2, 1). We demonstrate this for k = 2, the rest following by
induction. For a.e. α ∈ (2−1/2, 2−1/4), we have the Fourier transform of η given
by (26), which yields

φα
η (s) = φα2

η (s) φα2

η (αs). (30)

Since α ∈ (2−1/2, 2−1/4) implies α2∈ (1/2, 2−1/2), we have each of the two
Fourier transforms on the right hand side of (30) in L2, and so by Hölder’s inequality
φα

η is in L1. Since φα
η is also in L∞, we have φα

η ∈ L1(R) ∩ L∞ (R) ⊂ L2 (R).
Finally, by induction, one can check that for a.e. α ∈ ⋃∞

k=0

(
2−1/k, 2−1/2k

)
,

φα
η ∈ L2 (R), and so η has L2 density. Thus, µf is absolutely continuous with L2

density for a.e. α ∈ (1/2, 1).

6.3 An extension of Solomyak theorem to the asymmetric case p �= 1/2

The main findings in [52] for the asymmetric case pertaining to our IFS are the
following.

Theorem 2 (Peres - Solomyak)

i) If 1/3 ≤ p ≤ 2/3, then for almost every pp (1 − p)1−p
< α < 1 µf is absolutely

continuous;
ii) If 1/3 ≤ p ≤ 2/3 and 1 < γ ≤ 2, then for almost every

[pγ + (1 − p)γ ]1/(γ−1) ≤ α < 1 µf has density in Lγ;
iii) for all 0 < p < 1 and all γ > 1, if µf is absolutely continuous with density in

Lγ , then α ≥ [pγ + (1 − p)γ ]1/(γ−1)
.

The meaningful innovation in the proof of both parts (i) and (ii) with respect to
the technique adopted in the proof of Theorem 1, is the use of the Radon-Nykodym
derivative of the invariant measure, ∂µf/∂x, which actually is its density and exists
whenever µf is absolutely continuous. The importance of this method lies in by-
passing L2 theory10 which relies on (29). As a matter of fact, in place of (29) the

10 Note that this approach includes the L2 case for γ ≥ 2, since [pγ + (1 − p)γ ]1/(γ−1) =p2+(1−
p)2 for γ = 2. However, a theory purely in L2, like the one pursued in [56], would have missed absolute
continuity of µf (with density in Lγ for 1 < γ < 2) between pp (1 − p)1−p and p2 + (1 − p)2.
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authors show that∫ b

a

[∫ ∞

−∞
(D (µf , x))γ−1

dµf (x)
]

dα < ∞,

where
D (µf , x) = lim inf

r→0+
(2r)−1

µf [Br (x)]

and Br (x) denotes the ball of center x and radius r, holds for any interval (a, b) ⊂
(0, 1) such that a > [pγ + (1 − p)γ ]1/(γ−1) and the transversality condition holds.
As for the upper extremum of interval (a, b), they use the same estimation as in
[56]: b = 0.649 < τ , which clearly works since, for 1/3 ≤ p ≤ 2/3 and γ ≤ 2,

[pγ + (1 − p)γ ]1/(γ−1) ≤ p2 + (1 − p)2 ≤ (1/3)2 + (2/3)2 = 5/9 < 0.649.

Hence, part (i) of Theorem 2 is true for pp (1 − p)1−p
< α < 0.649,

and the extension to the whole interval
(
pp (1 − p)1−p

, 1
)

(and to interval[
[pγ + (1 − p)γ ]1/(γ−1)

, 1
)

in part (ii)] is established through convolution tech-

niques similar to that discussed in Section 6.2.
Actually slightly more can be said: since the transversality condition holds for all

pairs (α, p) such that α ≤ 0.649, part (i) of Theorem 2 is immediately extended for
values of p in the larger interval (0.156, 0.844) (where the extrema are the solutions
of the equation pp (1 − p)1−p = 0.649) and for pp (1 − p)1−p

< α < 0.649. A
similar argument also applies to part (ii) of Theorem 2, therefore yielding the
following corollary.

Corollary 1

i) If 0.156 < p < 0.844, then for almost every pp (1 − p)1−p
< α < 0.649 µf is

absolutely continuous;

ii) If 0.156 < p < 0.844 and 1 < γ ≤ 2 is such that [pγ + (1 − p)γ ]1/(γ−1)
<

0.649, then for almost every [pγ + (1 − p)γ ]1/(γ−1) ≤ α < 0.649 µf has
density in Lγ .

The difficulty in extending the last result for values of p ∈ (0.156, 0.844)
outside the interval [1/3, 2/3] and for values of α larger than 0.649 lies in the use
of convolutions techniques, which do not work in this case.

Necessary smoothness condition (iii) in Theorem 2 is derived from a theorem
of Hardy-Littlewood [31].

7 A bifurcation diagram

It is clear that in the equal probability case, we are able to describe the nature of
the stochastic steady-state for (Lebesgue) almost every value of the technological
parameter, α. However, in the asymmetric case (p �= 1/2), the results of Sections 4,
5 and 6 are unable to completely characterize the invariant distribution, especially



Stochastic steady state 67

Figure 5. M: mutually singular measures over Cantor sets; S: measures singular with respect to
Lebesgue measure; H: a.e. absolutely continuous measures with density in L2; G: a.e. absolutely
continuous measures with density in Lγ , with 1 < γ ≤ 2 (recall that [pγ + (1 − p)γ ]1/(γ−1) =
p2 + (1 − p)2 when γ = 2); U: unknown area

for values of technological parameter α above the entropy curve and values of
probability p outside the interval [1/3, 2/3].

In view of all known results reviewed in the previous sections, we are able
to sketch only a partial “bifurcation diagram” that includes the combinations of
parameter values covered by our analysis. It appears as in Figure 5.

In view of necessary smoothness condition expressed in part (iii) of Theorem
2, it is natural to formulate a conjecture for the missing values of α above the
entropy curve and p outside interval [1/3, 2/3]. In (iii) is excluded the possibil-

ity that µf is too smooth below curve [pγ + (1 − p)γ ]1/(γ−1), namely, given that

µf has density in Lγ , then α ≥ [pγ + (1 − p)γ ]1/(γ−1), for any γ > 1. Note

that limγ→1+ [pγ + (1 − p)γ ]1/(γ−1) = pp(1 − p)(1−p) and the graph of function

[pγ + (1 − p)γ ]1/(γ−1) moves upward away from the graph of the entropy curve
pp (1 − p)1−p for increasing values of γ, until converging to the graph of function

max (p, 1 − p), that is, limγ→+∞ [pγ + (1 − p)γ ]1/(γ−1) = max (p, 1 − p).
The conjecture, thus, is that for all 0 < p < 1, as one moves upward above

the entropy curve, µf is generically absolutely continuous with density becoming
gradually better shaped, starting from having density in L1 (close to the entropy
curve), then having density in L2 for γ ≥ 2 (this is already known to be true by part
(ii) of Theorem 2 at least for p ∈ [1/3, 2/3]) and eventually having an essentially
bounded density for γ → +∞, that is, for almost every max (p, 1 − p) ≤ α < 1.
This situation is depicted in Figure 6.

However, since very few cases of singular measures above the entropy curve are
known (actually the only known examples are those given by Erdös for p = 1/2, see
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Figure 6. M: mutually singular measures over Cantor sets; S: measures singular with respect to
Lebesgue measure; H: a.e. absolutely continuous measures with bounded density. In the area between S
and H, the invariant measure has density in Lγ , γ > 1, depending on [pγ + (1 − p)γ ]1/(γ−1). Three
increasingly smooth cases are plotted between the entropy curve and max (p, 1 − p): γ1 = 11/8,
γ2 = 2 and γ3 = 4

[22]), even if the portrait in Figure 6 were true, there is still room for investigating
Garsia’s [29] much stronger conjecture that the invariant measure is absolutely
continuous for all pp(1 − p)(1−p) < α < 1 but a countable set of points.

8 Appendix

In this final section we present a result connecting L-metric convergence to weak
convergence of measures, which we used in our exposition in Section 2.1.2.

Proposition 5 Convergence in the L-metric defined in (6) implies weak conver-
gence over L(X); that is, given any sequence µt in L(X) and a measure µf in
L(X), L (µt, µf ) → 0 implies µt =⇒ µf .

To prove this result we need the following lemma which is a variant of Uryshon
Lemma.

Lemma 1 Let (X, d) be a metric space and A, B ⊂ X non-empty closed disjoint
sets. If d (A, B) > 0, then there exists a Lipschitz function g : X → R such that
g(a) = 0 for all a ∈ A, g(b) = 1 for all b ∈ B and 0 < g (x) < 1 for all x /∈ A∪B.

Proof. Consider

g (x) =
d (x, A)

d (x, A) + d (x, B)

Since d (A, B) > 0, there is δ such that d (x, A) + d (x, B) > δ > 0. Hence, g
satisfies all requirements but Lipschitz property. To see that g is Lipschitz, for any
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x, y ∈ X and ε > 0, find a ∈ A so that d (a, y) ≤ d (y, A) + ε. Then

d (x, A) ≤ d (x, a) ≤ d (x, y) + d (y, a) ≤ d (x, y) + d (y, A) + ε

and
d (x, A) − d (y, A) ≤ d (x, y) + ε

Since ε is arbitrary, and by exchanging x with y, we get

|d (x, A) − d (y, A)| ≤ d (x, y)

from which follows
|g (x) − g (y)| ≤ δ−1d (x, y)

Proof. (Proposition 5) It suffices to show that

lim sup
t→∞

µt (C) ≤ µf (C) (31)

for all closed sets C ⊂ X .
Note that

L (µt, µf ) → 0 =⇒
∫

gdµt →
∫

gdµf

for any Lipschitz function g. Take any closed (proper) subset C ⊂ X and consider
the sequence of open sets

{
C1/n

}
, where Cδ denotes the δ-parallel body of C

defined in (8). Clearly C ⊂ C1/n for all n and the complement Cc
1/n is non-empty

for n large enough. By Lemma 1 there exists a Lipschitz function gn such that
gn(x) = 1 for x ∈ C and gn(x) = 0 for x ∈ Cc

1/n. Therefore

µt (C) ≤
∫

gndµt ≤ µt

(
C1/n

)
and

lim sup
t→∞

µt (C) ≤
∫

gndµf ≤ µf

(
C1/n

)
,

which, for n → ∞, gives (31).

References

1. Alexander, J., Yorke, J.: Fat Baker’s transformation. Journal of Ergodic Theory and Dynamical
Systems 4, 1–23 (1984)

2. Asplund, E., Bungart, L.: A first course in integration. New York: Holt, Rinehart and Winston 1966
3. Barnsley, M. F.: Fractals everywhere. Boston: Academic Press 1988
4. Barnsley, M. F., Demko, S.: Iterated function systems and the global construction of fractals.

Proceeding Royal Society London Series A 399, 243–275 (1985)
5. Besicovitch, A. S.: On the fundamental geometric properties of linearly measurable plane sets of

points II. Math. Annalen 115, 296–329 (1938)
6. Bhattacharya, R. N., Majumdar, M.: On a class of stable random dynamical systems: theory and

applications. Journal of Economic Theory 96, 208–229 (2001)
7. Billingsley, P.: Hausdorff dimension in probability theory. Illinois Journal of Mathematics 4, 187–

209 (1960)
8. Billingsley, P.: Ergodic theory and information. New York: Wiley 1965



70 T. Mitra et al.

9. Billingsley, P.: Probability and measure. New York: Wiley 1979
10. Brock, W. A., Majumdar, M.: Global asymptotic stability results for multisector models of optimal

growth under uncertainty when future utilities are discounted. Journal of Economic Theory 18,
225–243 (1978)

11. Brock, W. A., Mirman, L.J.: Optimal economic growth and uncertainty: the discounted case.
Journal of Economic Theory 4, 479–513 (1972)

12. Brown, A.: An elementary example of a continuous singular function. American Mathematical
Monthly 81, 295–297 (1969)

13. Chung, K. L.: A course in probability theory. New York: Academic Press 1974
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